高级搜索

共有 1 个搜索结果

  • 文章撰写: 常见审稿问题
    内容: 传感器选择效率:以Ca2+为例,如何确定Ca2+传感器检测到的为Ca2+信号,而非其它离子的信号?        传感器对目标离子/分子的选择效率验证,是非损伤微测系统传感器商业化流程中的重要一步。研究人员会检测传感器对溶液中包括目标离子/分子在内的常见离子的选择效率,只有当传感器对目标离子/分子的选择效率达到95%以上时,才被认为符合科研需求。   是否为真实信号——背景信号干扰程度        流速信号的确有可能受到背景信号的干扰,从而产生非真实的信号。实验中,可采用传感器远离样品一定距离后所采集的信号,同样品信号进行对比,以确定检测结果是否受到背景信号的干扰。        神经元Ca2+流速检测(F2011-005)        如上图所示,在第150s时,将Ca2+传感器远离神经元200μm,此时测得的流速数据不受样品信号影响,即为背景值。如果背景值在0线上下小幅波动,表明背景信号弱,其对样品流速信号的影响有限,可认为此时的样品信号接近于真实信号。对于根、叶等样品,均可采用此法,以验证样品信号是否受背景信号的干扰。   离子/分子流动方向、大小与以往文献不一致——N外排信号、IAA流速数量级        1. 为什么根部的NH4+、NO3-测不到吸收?        NMT作为活体检测技术,可反应样品的实时生理状态。而根部NH4+、NO3-的实时流动情况会受到诸多因素的影响,如前期培养、样品处理、取样方法、测试液成分、检测位点等等。NH4+、NO3-出现无法测到吸收并非异常情况,已发表的SCI文献中也多次报道(文献编号:C2013-008),可以根据课题需要对实验体系进行调整。      不同基因型拟南芥根部成熟区的NO3-流速。正值为外排,负值为吸收      下面分享几位老师对于此问题的经验及看法:     1)中国农业科学院水稻所某老师        a. 做NH4+、NO3-吸收动力学实验时(用测浓度技术),茶树苗一般会饥饿一周后进行检测。如果饥饿时间短,无法测到吸收也属正常情况。        b. NH4+较NO3-容易测到吸收,因为植物对NH4+浓度比较敏感,高NH4+浓度对植物有毒害作用,所以植物吸收NH4+后,会将其转化为其它物质,保持体内较低的NH4+浓度,而NO3-则无此机制,植物体内的NO3-浓度较NH4+高,不易测到吸收。     2)西北农林科技大学某老师        a. 样品使用幼苗,苗龄不宜太长,切忌为了多长一些根,以便扩大样品挑选空间而错过最佳检测时间;        b. 扩大根部检测的范围,寻找吸收位点;        c. 尽量避免长途运输,否则样品状态会受到较大影响。     3)海南大学某老师        使用琼脂培养基培养的木薯,N饥饿一周,依然无法检测到NO3-吸收。虽然根毛稀少,但部分根毛可以检测到NO3-的吸收。        2. 为什么检测到的IAA流速值的数量级与国外文献中IAA的数量级差别较大?        旭月公司研发的IAA传感器,是世界上第一款商业化IAA传感器。其检测数据已经在SCI期刊上发表了诸多成果(C2015-019,C2016-007),准确性已经得到了国际学术界的认可。因非损伤微测技术检测的是活体样品,受各类因素影响,信号变化幅度较大。不同的实验体系,检测结果相差较大,是较为普遍的现象。   离体检测有影响——切根、撕叶片        任何一个技术都无法做到绝对的“无损”,非损伤微测技术也不例外。为了符合非损伤微测技术的检测要求,有时需要采用切、剖等方式,将样品暴露出来。最常见的是将植物的根切下来后再进行检测。        1)诸多的研究成果已经侧面表明,对离体根进行检测,依然可以得到科学的结论。        2)有学者专门设计实验,对比离体前后,不同植物根部各个离子流速的差异。结果表明,将松树、豌豆、大豆等植物的地上部分切断,在之后的80分钟内,并没有导致其根部H+,NH4+,NO3-流速产生显著的变化(F2012-004)。        在体花旗松根与离体花旗松根根部H+,NH4+,NO3-流速的对比   样品检测时的测试液环境并非正常生长时的培养环境,这会对流速检测结果造成影响吗?        样品检测时所处的溶液环境即测试液,其确定的原则是:既满足课题研究需求,又符合非损伤微测系统技术的要求。        测试液成分的设计是开放性的,研究者可以根据自己的课题需求进行设计。在正式检测前,通过非损伤微测系统判断溶液成分是否会影响到传感器,从而导致流速结果的准确性受影响。假若符合技术要求,可直接使用此测试液上机检测;如果不符合技术要求,则需调整溶液的成分再判断是否符合技术要求。总之,测试液成分的确定过程,即是在科研需求与技术要求之间,寻找一个最佳的平衡点。        作为研究者,对于“样品检测时的测试液环境并非正常生长时的培养环境,从而无法反映正常生理状态下的流速结果”这一问题,大可不必担心。从对现有的数百篇非损伤微测技术文献统计来看,测试液成分同培养液成分相同的情况,并不多见,但这依然不能阻止非损伤微测技术研究的发展。 ...

热门搜索: