

NMT活体工作站 用户手册 v1.3

关于本手册:

● 使用产品之前,请先阅读本手册,以确保安全和正确使用。

- 使用方法基于产品的预设设定。
- 图片和屏幕截图可能与实际产品的外观不同。
- 系统参数及功能可能因产品型号、软件版本而异。

版权声明:

本工作站用户手册版权归美国扬格公司所有。美国扬格公司保留对本手册内容修改、更 新及正式出版的权利。未经美国扬格公司许可,任何形式的抄袭、复制、转载等行为均被视 为侵权,美国扬格公司保留采取法律手段的权利。

- imFluxes V2.0[®] is registered trademark of YoungerUSA, LLC.
- Windows XP\Win7\Win8[®] is registered trademark of Microsoft Cooperation.
- Microsoft Office[®] is registered trademark of Microsoft Coopernation.

如何使用手册:

注:

注:即注释、注解。

🕒 注意事项

注意事项:指操作过程中应该注意的事项。

目	录
	~1~

	系统介绍	• 4
	1. 系统原理	- 4
	1.1 物理学和数学原理	• 5
	1.2 电学原理	• 5
	2. 系统型号、组成和参数 ······	- 8
	2.1 系统型号	• 8
	2.2 系统组成	- 8
	2.3 系统参数	11
	3. 控制面板	15
二.	快速安装指南	16
Ξ.	使用方法	18
	1. 系统开机	19
	1.1 系统开机	19
	2. 启动软件	20
	2.1 非损伤离子分子流速检测软件 imFluxes V2.0软件的启动	20
	2.2 PHMIAS2008视频采集软件的启动	21
	3. 前置放大器的安装	23
	4. 选择测定传感器(电极)类型	24
	4.1 单离子微传感器(电极)	24
	4.2 单分子微传感器(电极)	25
	5. 离子选择性微传感器(电极)的制作	26
	5.1 电解液和LIX的灌充	26
	5.2 银丝氯化	29
	6. 微传感器(电极)的校正	31
	6.1 单离子微传感器(电极)的校正	31
	6.2 单分子微传感器(电极)的校正	36
	7. 样品固定及观察	41
	8. 微传感器(电极)定位	42
	8.1 手动调节	42
	8.2 计算机控制电动调节	42
	9. 开始测试	44

		47
	10. 数据及图形输出	4/
	11. 结束测试	51
四.	附录	52
	1. 注意事项	52
	1.1 离子选择性微传感器(电极)的制作	52
	1.2 单离子选择性微传感器(电极)的校正	52
	1.3 单分子微传感器(电极)的校正	54
	1.4 样品固定及观察	54
	1.5 开始测量	54
	2. 常见问题解答	55
	2.1 传感器(电极)开口重要吗? 旭月公司有哪些型号电极?	55
	2.2 制备传感器(电极)时LIX应灌充多长?	55
	2.3 LIX无法吸入是什么原因?怎样解决? ······	55
	2.4 LIX泄漏是什么原因?怎样解决?	56
	2.5 灌充液无法从传感器(电极)尖端推出是什么原因? 怎样解决? …	56
	2.6 测试液和校正液设计时需要遵循的原则有哪些?	56
	2.7 银丝氯化应注意哪些问题?	56
	2.8 测试时参比电极应放在什么位置?	56
	2.9 键盘控制传感器(电极)没有反应时怎么办?	57
	2.10 测H ⁺ 时数据非常不稳定什么原因? ····································	57
	2.11 非损伤微测技术测试实验时如何加入刺激药物?	57
	2.12 如何确定样品的测试位置?	57
	3. 常见故障解答	57
	3.1 机械故障	57
	3.2 电学故障(电源线)	57
	3.3 电学故障(静噪干扰)	58
	3.4 热相关	58
	3.5 系统部分配件更换流程	58

-、系统介绍

NMT活体工作站系列产品是建立非损伤微测技术(Non-invasive Micro-test Technology,NMT)实验 平台的一整套设备,非损伤微测技术作为多学科尖端科技的集成,利用离子/分子选择性/特异性传感器 (电极)在不接触被测样品的情况下获得进出样品的各种离子/分子浓度、流速及其运动方向的信息。

非损伤微测技术是一大类微电极技术的统称,包括: 扫描离子选择性电极技术(Scanning Ionselective Electrode Technology, SIET)、扫描振动电极技术(Scanning Vibrate Electrode Technology, SVET)、扫描极谱电极技术(Scanning Polarographic Electrode Technology, SPET)、自参比离子选择 性电极技术(Self-reference Ion Selective Electrode Technology, SERIS)、自参比极谱电极技术(Selfreference Polarographic Electrode Technology, SERP)、自参比酶辅助电极技术(Self-reference Enzyme Assisted Electrode Technology, SERE)、扫描参比微电极技术(Scanning Reference Electrode Technology, SRET)、微电极离子流技术(Microelectrode Ion Flux Estimation Technology, MIFE)等技术。

本手册主要介绍的是基于NMT技术的NMT活体工作站产品。

下面主要通过系统原理,系统型号、组成和参数,系统面板三个方面来详细介绍NMT活体工作站。

1. 系统原理

"NMT活体工作站"是通过计算机和精密运动控制系统的自动控制,基于非损伤微电极技术,在不接触被测样品的情况下进行三维、实时、动态地测量,获取进出样品的各种分子/离子浓度、流速及其运动方向信息的设备。

该工作站采用非损伤微测技术(Non-invasive Micro-test Technology, NMT),以其特有的时间和空间 分辨率,对现有的电生理技术如膜片钳技术及荧光染色技术做出了重要补充,并为鉴定或验证某些生物 膜运输系统的功能提供了非常有力的工具(见图1)。

时间分辨率:	毫秒	秒	分	小时
空间分辨率:	纳米	微米	厘米	分米
非损伤微测技术				
	膜片钳技术		化学分析方法	

图1 几种主要的离子跨膜运输研究方法的时间分辨率和空间分辨率比较

註: "非损伤微测技术"作为一个开放式的实验平台,填补了整体组织研究过程中通过较慢的 化学痕量方法和较快的通过染料标记或膜片钳等局部研究方法两者之间的技术空白。

下面对工作站的物理学原理、数学原理和电学原理进行详细介绍。

1.1 物理学和数学原理

工作站是通过物理学中的离子/分子扩散定律的数学公式,即Fick's第一扩散定律,计算获得离子/分子的浓度和流速以及运动方向。下面以Ca²⁺浓度梯度和Ca²⁺传感器(电极)为例说明工作站的物理学及数 学原理(见图2)。

离子选择性传感器(电极)由玻璃微电极、Ag/AgCl导线、电解质(100mM CaCl₂)及液态离子交换剂(LIX)四部分组成。该电极在待测离子浓度梯度dc中以已知距离dx进行两点测量,可以得到两点的V₁、V₂的电压/浓度校正曲线。D是离子/分子特异的扩散常数(单位:cm⁻²•sec⁻¹),将它们代入Fick的第一扩散定律公式: J₀ = -D•dc/dx,可获得该离子的流动速率(单位: picomole • cm⁻² • sec⁻¹),即:每一秒钟通过一个平方厘米的该离子/分子皮摩尔数。

图2 以Ca²⁺传感器(电极)为例说明工作站的物理学及数学原理

1.2 电学原理

工作站获取的是离子/分子的电压值和电流值,因此电学原理是其工作基础。下面结合工作站的测量 原理图(见图3)介绍其工作原理。

当采用离子/分子选择性传感器(电极)对被测材料进行检测时,检测信号输入到前置放大器,再经 由信号处理器到达数据采集系统,通过非损伤离子分子流速检测软件(imFluxes V2.0)进行数据记录、显 示和处理,且可以多通道显示和分析所记录的数据;同时,在测量过程中imFluxes V2.0软件通过数据采集 系统与显微成像装置连接,从而实现测试过程中对被测材料以及离子/分子选择传感器(电极)进行实时 图像捕捉和监控;另外,在测量过程中imFluxes V2.0软件与运动控制器连接,运动控制器与位移传递架上 的驱动器连接,通过驱动器实现对离子/分子选择传感器(电极)的三维运动控制。

Non-invasive Ion & Molecule Flux Measurement Software Data Acquisition System

图3 工作站的测量原理图

工作站可以向用户同时提供两种前置放大器:极谱前置放大器和电压前置放大器(即离子前置放大器)(见图4)。极谱前置放大器是配合固体微传感器(电极),如铂铱合金微传感器(电极)(用于测量O₂和H₂O₂、IAA等分子)使用的一种前置放大器;电压前置放大器是配合各种选择性离子微传感器(电极)(用于测量H⁺、K⁺、Ca²⁺等)使用的一种前置放大器。尽管两种前置放大器所使用的微传感器(电极)及其工作原理不同,但它们测量分子和离子流动速率的原理和方法相同。因此,它们可以通用后续的电子电路以及计算机软件系统。

图4 工作站极谱前置放大器和电压前置放大器的电子线路简图

2. 系统型号、组成和参数

2.1 系统型号

工作站名称	型号	标配指标	样品尺寸	测量维度
NMT活体根工作站	NMT-LRP-00A00	H^+ , Ca^{2+}	150 μ m-10cm	一维
NMT活体组织工作站	NMT-TRP-00A00	$H^{\scriptscriptstyle +}$ 、 $Na^{\scriptscriptstyle +}$	大于10cm	一维
NMT逆境研究工作站	NMT-SRP-00A00	$K^{\scriptscriptstyle +}$ 、 $Na^{\scriptscriptstyle +}$	150 μ m-10cm	一维
NMT营养研究工作站	NMT-NRP-00A00	NH_4^+ , NO_3^-	150 μ m-10cm	一维
NMT活体肿瘤工作站	NMT-LTP-00A00	H^+ K^+	150 μ m-10cm	一维
Ca ²⁺ 工作站	NMT-CAP-00A00	Ca^{2+} , K ⁺	150 μ m-10cm	一维
NMT活细胞工作站	NMT-LCP-00C00	H^+ , Ca^{2+}	5 μ m-10cm	三维
NMT活体藻类工作站	NMT-LAP-01A00	$Ca^{2+}, 0_2$	150 μ m-10cm	一维
NMT光合研究工作站	NMT-PRP-01A00	H^+ , O_2	150 μ m-10cm	一维
IAA工作站	NMT-IAA-A00	IAA	150 μ m-10cm	一维
NMT重金属工作站	NMT-HMP-00A00	H^+ , Cd^{2+}	150 μ m-10cm	一维
NMT金属腐蚀工作站	NMT-CRP-00A00	Na⁺、CI⁻	大于2cm	一维

2.2 系统组成

📫 注: 以下所有组成和技术参数仅供参考,以客户实际购置的产品实物为准!

图5 工作站组成示意图

编号	组件名称	基本功能
1	离子高增量主放大器	采集离子传感器(电极)信号进行放大,并
1		传输至数据采集系统
2	前置放大器(离子)	采集离子传感器(电极)信号进行初级放大
3	K ⁺ 流速测量传感器	采集K ⁺ 流速信息
4	Na ⁺ 流速测量传感器	采集Na⁺流速信息
5	H⁺流速测量传感器	采集H ⁺ 流速信息
6	Ca ²⁺ 流速测量传感器	采集Ca ²⁺ 流速信息
7	NH4 ⁺ 流速测量传感器	采集NH ₄ ⁺ 流速信息
8	NO』流速测量传感器	采集NO, 流速信息
9	Cd ²⁺ 流速测量传感器	采集Cd ²⁺ 流速信息
10	Mg ²⁺ 流速测量传感器	采集Mg ²⁺ 流速信息
11	CF流速测量传感器	采集CF流速信息
		采集离子传感器(电极)或分子传感器
12	离子/分子高增量主放大器	(电极)信号进行放大,并传输至数据采集
		系统
13	前置放大器(极谱)	采集分子传感器(电极)信号进行初级放大
14	O2流速测量传感器	采集O ₂ 流速信息
15	H2O2流速测量传感器	采集H ₂ O ₂ 流速信息
16	公子主摘县主访十哭	采集分子传感器(电极)信号进行放大,并
10	刀」同有里土队八价	传输至数据采集系统
17	IAA流速测量传感器	采集IAA流速信息
18	信号外班系统组件	配合主放大器、前置放大器、各类传感器完
10		成采集信号数据
19	X轴自动机械装置	自动控制微传感器(电极)在X方向运动
20	Y轴手动机械装置	手动控制微传感器(电极)在Y方向运动
21	Y轴自动机械装置	自动控制微传感器(电极)在Y方向运动
22	Z轴手动机械装置	手动控制微传感器(电极)在Z方向运动
23	Z轴自动机械装置	自动控制微传感器(电极)在Z方向运动
24	集成X轴运动控制装置	通过驱动器精确控制微传感器(电极)在X
		单方向运动
25	独立三维运动控制装置	通过驱动器精确控制微传感器(电极)在
		XYZ三个方向运动
26	运动控制组件	配合运动控制装置、机械装置完成微传感器
07	やゆえんないではま	(电极)的运行
21		犹耿亚
28		狱 収 显 版 返 因 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图
29	显微成像系统组件	监视样品与数据测量情况
30	基础型显微成像装置	获取测量图像,辅助定位样品和微传感器
		(电极)

编号	组件名称	基本功能
31	可视化显微视频成像装置	获取测量图像,辅助定位样品和微电极
		制备选择性微传感器(电极)专用,调节传
20	华权林南乙仕咸熙(山权) 制久组体	感器(电极)聚焦清晰固定并调节LIX载体
32	32 匹撑性离于传恩帝(电极)间留组件	聚焦清晰
		控制玻璃微传感器(电极)灌充LIX长度
		屏蔽外部的电磁波和静电干扰,降低噪
33	33 防震屏蔽组件	音、降低外界机械振动对样品、微传感器
		(电极)运动的干扰
34	数据采集系统	控制系统整体运转
35	非损伤离子分子流速检测软件	通过此软件实现微传感器(电极)运动控制
	imFluxes V2.0	设置、数据采集与记录输出等功能

2.3 系统参数

运动控制	相关参数
X轴自动机械装置	Y轴手动机械装置
• 负载能力: 156N	• 负载能力: 156N
• 行程: 25mm	• 行程: 25mm
• 控制方式: 步进电机驱动	• 控制方式: 螺杆手动驱动
	744毛动机械装置
• 贝软能刀: 156N	• 贝软能刀: 191N
• 行程: 25mm	• 行程: 25mm
• 控制方式: 步进电机驱动	• 控制方式: 螺杆手动驱动
Z轴自动机械装置	运动控制组件
• 负载能力: 191N	超精密导程螺杆
• 行程: 25mm	• 螺纹型号: M1*0.25mm
• 控制方式: 步进电机驱动	• 负载能力: 90N
	• 行程: 正反方向25mm
集成X轴运动控制装置	
• 最小移动微步: 39 nm	固定平台
• 双向重复性: 500 nm	• 平台: L200mm×W200mm×H5mm
	• 孔径: M6
独立三维运动控制装置	• 孔距矩阵: 25mm
• 最小移动微步: 39 nm	• 可调节高度支撑杆: 150mm—250mm
• 双向重复性: 500 nm	
• 驱动数量: 三轴驱动	

信号采集	相关参数
离子高增量主放大器	分子高增量主放大器
 • 输入功率: 100-240V AC 50/60 Hz • 放大器增益: ×100 • 采集读取一种离子传感器(电极)信号模块 离子/分子高增量主放大器 • 输入功率: 100-240V AC 50/60 Hz • 放大器增益: ×100 • 采集读取一种离子传感器(电极)信号模块 	 • 输入功率: 100-240V AC 50/60 Hz • 放大器增益: ×100 • 采集读取一种分子传感器(电极)信号模块 • 极化电压输出范围: 0—±0.999V • 精确度: ±1.000mV 前置放大器 (离子) • 输入阻抗: 10TΩ • 最小增益: ×10
 5 侯庆 • 采集读取一种分子传感器(电极)信号模块 • 极化电压输出范围: 0—±0.999V • 精确度: ±1.000mV 	
呙于流速传感 器	信号处理系统组件
• 传感器材质: 圾坞	超低渗固体参比电极
 分子流速传感器 ・ 传感器材质:金属 前置放次端直极谱20μm ・ 电流/电压转换:内置 ・ 增益: 1mV/pA 	 • 温度范围: -5℃—100℃ 玻璃微传感器(电极)固定架 • 尺寸: 25 mm×10 mm • 银丝规格: 50 mm×0.2 mm 万向参比电极固定支架 • 旋转: 360° • 高硬度滑轨,可调节移动距离 降噪音连接线固定架
	• 尺寸: 80mm×20mm×30mm

显微成像	相关参数
成像系统310万像素	成像系统800万像素
• 镜筒: 三目铰链式, 可接照相设备	• 镜筒: 三目铰链式, 可接照相设备
• 目镜: 10×, 视野数: 20 mm	• 目镜: 10×, 视野数: 20 mm
• 物镜: 4×、10×、20×、40×	• 物镜: 4×、10×、20×、40×
• 放大倍数: 范围40倍—400倍	• 放大倍数: 范围40倍—400倍
• 物镜转换器: 内定位五孔转换器	• 物镜转换器: 内定位五孔转换器
• 粗微调焦装置: 粗微同轴调焦装置, 微调 每圈0.1mm, 格值0.001mm, 粗调带松紧调 节,并有调焦上限位装置	• 粗微调焦装置: 粗微同轴调焦装置, 微调 每圈0.1mm, 格值0.001mm, 粗调带松紧调 节, 并有调焦上限位装置
• 载物台: 机械移动载物台, XY向移动调节 手轮,移动范围80×50mm	• 载物台: 机械移动载物台, XY向移动调节 手轮,移动范围80×50mm
• 总像素: 310万	• 总像素: 800万
• 图像传感器大小: 1/2" 传感器	• 图像传感器大小: 1/2.5" 传感器
• 图像分辨率: 最高2048×1536	• 图像分辨率: 最高3264×2448
• 信噪比: 43dB	• 信噪比: 34dB
• 白平衡: 自动/手动	• 白平衡: 自动/手动
• 输入电压接口: DC 5V	• 输入电压接口: DC 5V
• 接口: USB2.0	• 接口: USB2.0
• 功能: 拍照、录像、图像处理	• 功能: 拍照、录像、图像处理
显微成像系统组件	
显示器	
• 背光类型: LED背光	
• 接口类型: DVI/VGA	
• 分辨率: 1920×1080	
• 对比度: 5000000: 1动态	

• 尺寸: 21.5英寸

电极制备相关参数		
基础型显微成像装置	可视化显微视频成像装置	
• 大视场双目镜, WF10X	• 大视场双目镜: WF10X	
• 物培· 4× 10× 40×	• 物镜: 4×、10×、40×	
	CCD高清摄像头	
选择性离子传感器(电极)制备组件	• 像素: 30万	
运动控制及压力调节装置	• 图像分辨率: 最高2048×1536	
• 台面尺寸: 40mm×40mm	• 输入电压接口: DC 5V	
• 行程: 13mm	• 输出端口: VGA	
• 精度: 3µ/1.5µ	• 功能: 四组十字线成像	
• 可精确控制LIX灌充的长度为: 1-2 μm	显示器	
• 胶管内径: 1.5mm	• 背光源: LED	
银丝氯化装置	• 接口类型: VGA	
• 供电: 9V	• 分辨率: 1024×768	
• 高度可调整范围: 5cm	 · 对比度: 1000: 1 	
• 铂丝长度: 3cm	• 尺寸: 12英寸	
• 氯化液容器直径: 3cm		
屏蔽防震	相关参数	
防震台	屏蔽罩	
• 固有频率:约为1.5Hz	 材质:金属 	

- 隔振效率: 95%
- 自重: 约22KG
- 最大负载: 50KG
- 尺寸: L500mm×W400mm×H60mm

数据采9	耒相关参数
数据采集系统	非损伤离子分子流速检测软件imFluxes V2.0
 ・	• 离子浓度、流速测量软件模块
• 传输方式: 信号采集卡	• 分子浓度、流速测量软件模块
	• 操作界面: 中文
	• 用户手册: 中文
	• 账户管理: 多用户管理模式
	• 数据输出: Excel输出流速及浓度

• 尺寸: L700mm×W700mm×H900mm

3. 控制面板

本章主要介绍NMT活体工作站系列产品的基本使用方法,重点介绍以下内容:

- 系统开机
- 启动软件
- 前置放大器的安装
- 选取测试微传感器(电极)类型
- 离子选择性微传感器(电极)的制作
- 微传感器(电极)的校正
- 单离子微传感器(电极)的校正
- 单分子微传感器(电极)的校正
- 样品固定及观察
- 微传感器(电极)定位
- 开始测试
- 数据及图形输出
- 结束测试

1. 系统开机

1.1 系统开机

打开稳压电源、数据采集系统、信号处理器、运动控制器、显微成像装置等电源,并开启气泵确保防 震台充气正常。

系统运行环境温度:室温

系统运行环境湿度: 50%~60%

2. 启动软件

2.1 非损伤离子分子流速检测软件 imFluxes V2.0软件的启动

双击桌面上的快捷方式,或单击快捷启动栏中的快捷方式即可启动非损伤离子分子流速检测软件imFluxes V2.0软件。

启动非损伤离子分子流速检测软件imFluxes V2.0软件后,会出现登录界面,选择普通用户或管理员,然后分别输入用户名和密码,点击"登录系统"进入软件。如下图所示

6		×
X 旭月 [°]		YoungerU
	非损伤微测技术(NMT)	
V.	功能研究必备	
普通用户	管理员	Egister(+ (imit luxes V2/0)
用户名:	Administrator	
密 码:	****	
	登录系统 🔽 退出	

图6 非损伤离子分子流速检测软件imFluxes V2.0软件登录界面

用户种类分为普通用户和管理员,客户请用普通用户身份登录软件,用户名和密码均为系统购买单位 的用户编码。用户编码工程师会在系统操作培训时告知客户,请妥善保存相关信息。另外,用户编码还 可用于附属耗材的网上订购等。

2.2 ToupView视频采集软件的启动

首先确保摄像装置和计算机连接正常。

双击桌面图标" 💭 ",打开ToupView视频采集软件。此时出现软件的操作界面,如图7:

 ToupView 	
文件(F) 編編(E) 亜種(V) 同范(R) 段量(S) 編获(C) 整像(R) 段量(R) 設置(R) 展量(M) 送現(R) 整同(W) 報助(H)	
2 回 2 回 2 回 2 回 2 回 2 目 2 目 2 目 2 目 2 目	
ien, 🔹 🔹	
UCMOS0000078	N
★ 「「「「」」」	4g
50 STR 24	
預約:	
Million with the second s	
- 124	
- 075 ×	
5 10 10 10 10 10 10 10 10 10 10 10 10 10	
Q #28744/16/060 ¥	
- 1 Miles	
2014 ×	
/ 第样	
(e) to 2000 ×	
x 108 X	
■ 直方間 ※	
() #056077	
● #5≎ ×	
★ 余明 ×	
<i>●</i> 数	
() Toppiew	

图7 ToupView视频采集软件操作界面

点击左侧"相机列表"中的"UCMOS03100KPB"即可开始进行视频采集。如图8:

9 相机列表			~
UCMOS02	IOOVDR		
0000000	0		
◎ 捕获与分	辨率		*
	捕获	录像	
预览:	3264 × 2448		•
捕获:	3264 × 2448		•
格式:	RGB		•
🔁 曝光与增	益		*
▲ 白平衡			*
🎱 颜色调整			*
💡 光源频率	(防闪烁)		*
● 帧速率			*
🥐 色彩模式			*
▲ 翻转			*
У 采样			*
🗑 位深度			*
🛛 ROI			*
🏼 直方图			*
💽 暗场校正			*
③ 制冷			*
券 杂项			*
()。 参数			*

图8 ToupView视频采集软件相机的选取

视频采集界面如图9:

ToupView																	0	0
文件(F) 編編(E) 重要(V) 浅	16.18) 12.2015) MIRICI 20.400 12.20	17) 影励(1) 充庸(46) 2	SUDIO) RE(W) NA	b(H)		er se real												
2 M M 2 98	* #22 * 33% * LL (*	21 + 2 + + 7 //	% I. DOC	1.00 9. 1	Ⅲ ☆ 40 ≥	한민정도												
	e e sa e sasio	woodeedewrej	0 200	400 0	e 800	2000	1200 1400	3500	1100	2000 3	200 2400	2600	2900	3000	2200	3400	3500	2000
B month																		
UCMC60800828			1.															
MIRUSHR	8																	
54R 🚺	28																	
HSE: 3354 = 2445																		
補訊: 2264×2440	• ⁸																	
格式: [628																		
2 開始与電話	× *																	
076	*																	
口 网络动物	* =																	
Q 9289880000350	*																	
 HOUR 	* 5																	
C.898.00	¥ 0																	
1 k 18919	* <u>-</u>																	
* 504	÷ *																	
8 C.S.R																		
2 101																		
10.05M																		
S NPBERIL																		
0.000																		
9 2000 																		
(1) ***			1.1															
	120																	
	2																	
	8																	
	Ama (192 ma)																	
31日前日																		
UCMOS08000478	秋迷幸 2.7, 秋 20			2254 × 244	5		₿:0			1							像菜	

图9 ToupView视频采集界面

当您需要截取样品图时,可以点击"捕获与分辨率"中的"捕获"按钮" 📷 🛲 "如图10:

9 相机列表			*
UCMOS0310	00KPB		
创 捕获与分 第	辨率		*
6	捕获	录像	
预览:	3264 × 2448		•
捕获:	3264 × 2448		•
格式:	RGB		•
🗾 曝光与增益	蓋		*
▲ 白平衡			*
🥥 颜色调整			*
💡 光源频率(防闪烁)		*
🕒 帧速率			*
🥐 色彩模式			*
△▲翻转			*
_ ≪样			*
🕜 位深度			*
Z ROI			*
📓 直方图			*
💽 暗场校正			*
③ 制冷			*
🐈 杂项			*
③ 参数			*

图10 ToupView视频采集软件截图按钮

3. 前置放大器的安装

选择测定传感器(电极)类型之前,需要确保不同种类的前置放大器与信号处理器端口安装正确,如下表所示:

工作站名称	测试传感器 (电极)类型	前置放大器 种类及编号	信号处理器 端口	备注
NMT活体根工作站	单离子	离子Ion 1	Amp 1	初始设置为Amp 1
NMT活体组织工作站	单离子	离子Ion 1	Amp 1	初始设置为Amp 1
NMT逆境研究工作站	单离子	离子Ion 1	Amp 1	初始设置为Amp 1
NMT营养研究工作站	单离子	离子Ion 1	Amp 1	初始设置为Amp 1
NMT活体肿瘤工作站	单离子	离子Ion 1	Amp 1	初始设置为Amp 1
Ca ²⁺ 工作站	单离子	离子Ion 1	Amp 1	初始设置为Amp 1
NMT活细胞工作站	单离子	离子Ion 1	Amp 1	初始设置为Amp 1
	单离子	离子Ion 1	Amp 1	初始设置为Amp 1
NMT活体藻类工作站	单分子	分子Mol 1	Amp 1	需将Amp 1端口Ion 1替换为Mol 1
	单离子	离子Ion 1	Amp 1	初始设置为Amp 1
NMT光合研究工作站	单分子	分子Mol 1	Amp 1	需将Amp 1端□Ion 1替换为Mol 1
IAA工作站	单分子	分子Mol 1	Amp 1	初始设置为Amp 1
NMT重金属工作站	单离子	离子Ion 1	Amp 1	初始设置为Amp 1
NMT金属腐蚀工作站	单离子	离子Ion 1	Amp 1	初始设置为Amp 1

表1前置放大器与信号处理器端口安装说明

注: 1.接触和更换前置放大器时,必须佩戴防静电手腕,否则容易损坏前置放大器。 2.插拔信号处理器Amp1端口时,必须关闭信号处理器电源开关,否则极易损坏信号处理器。

4. 选择测定传感器(电极)类型

根据客户所选购产品型号不同,能够测定的离子、分子种类和测定方式有所不同。 首先选择要测定的传感器(电极)类型:单离子、单分子

4.1 单离子微传感器(电极):

将鼠标移动到单离子选择界面下,此时界面背景变成蓝色,说明已经选中,然后单击鼠标左键即可进 入单离子种类选择界面,选择要测试的相应离子,并点击确定。如下图所示:

图11 单离子传感器(电极)类型选择界面

4.2 单分子微传感器(电极):

将鼠标移动到单分子选择界面下,此时界面背景变成蓝色,说明已经选中,然后单击鼠标左键即可进 入单分子种类选择界面,选择要测试的相应分子,并点击确定。如下图所示:

图12 单分子传感器(电极)类型选择界面

5. 离子选择性微传感器(电极)的制作

5.1 电解液和LIX的灌充

要得到离子选择性微传感器(电极)必须正确灌充相应的电解液(又称:灌充液)和LIX到非损伤微 传感器(电极)尖端。灌装灌充液和LIX的步骤则随所测离子种类不同而稍有不同,都可以使用离子选择 性微传感器(电极)制备装置完成。

注:由于组装配件不同,实际系统中具体部件细节可能与下面图中所示略有出入,以实际系统 为准。操作方法基本相同。

图13 传感器(电极)制备装置示意图

1) 用LIX载体,在装有LIX的试剂瓶中迅速蘸一下,使尖端充满即可。 **注意事项:请见附录四.1.1.1**

图14 LIX 载体

2) 将LIX载体和压力控制器的接头用软管连接起来,调节三通阀使两者连通,同时注意两者的连接 需保持气密性。

图15 LIX载体、压力控制器、三通阀相连接

3) 安装LIX载体:将LIX载体放在固定器上,并安装在一个三维操纵器上。调整尖端的位置使其接近显微镜的视野。

图16 三维操纵器

4) 用螺旋压力控制器对LIX载体施以微小压力,使尖端形成一个LIX的凸面,并聚焦在这个凸面的顶点。

图17 LIX 载体形成凸面

5) 取一支玻璃微传感器(电极),用电解液灌充注射器从后端注入电解液,产生10mm的液柱。若 电解液柱过长,会增大整个微传感器(电极)的电容,进而阻抗增加,导致噪音增强。

□ 注意事项:请见附录四.1.1.2

图18 玻璃微传感器(电极)和注射器

6)将玻璃微传感器(电极)装在传感器(电极)压力调节装置的固定器上,并固定于显微镜载物台上。调节三通阀,使注射器与微传感器(电极)固定器相通,但与外界隔断。上述的连接同样需要保持 气密性,并且注射器内活塞应该置于量程中部。

图19 三通阀调节到位

7) 通过调节显微镜的平面载物台和粗细准焦螺旋,使微传感器(电极)尖端与LIX载体尖端在同一水平面上相对。两个尖端均调整到显微镜的视野内。

图20 传感器(电极)尖端在视野内成像

8) 用显微镜观察,并轻轻推动注射器,使电解液逐渐充满玻璃微传感器(电极)尖端。推动过程中可以将微传感器(电极)与LIX载体远离,防止微传感器(电极)移动位置造成的损坏。调节连接注射器的三通阀,使微传感器(电极)和外界大气相通。然后立即小心地将微传感器(电极)尖端与LIX的凸液面相接触,如果延时过长,可能造成电解液蒸发,结晶堵塞尖端。

图21 LIX的吸取

9) 由于毛细作用,LIX进入离子选择性微传感器(电极),通过推拉传感器(电极)压力调节装置的注射器可以调整LIX的长度。

10) 使LIX反复进出3-4次,避免完全推出。

11) 用注射器将离子选择性微传感器(电极)中的LIX液柱调整到合适长度后,将微传感器(电极)与LIX液面分离。

□ 注意事项:请见附录四.1.1.2

图22 LIX吸取适合的长度

12)调节三通阀,使固定器上的离子选择性微传感器(电极)与外界相通,以释放微传感器(电极)上的压力。从固定器上小心取下微传感器(电极)即可。

5.2 氯化银丝

需氯化的银丝是微传感器(电极)固定架上的一部分,银丝氯化前要用细砂纸(颗粒度600grit)将银 丝打磨干净 注意不要把银丝弄断,可使用0.1M的盐酸或0.1M的氯盐溶液(如KCl)。

i 注: 建议这一步骤在每周实验日开始时都进行。为了保证氯化效果的一致性和稳定性,推荐使 用电生理银丝氯化装置。

图23 微传感器(电极)固定架

将9V电池装好,确保正极引线(红色)接到传感器(电极)固定架的金属接头处,负极引线(黑色)接上纯铂丝,并将铂丝放置到银丝氯化溶液中(浸没即可),最后将传感器(电极)固定架上的银 丝尖端约1cm浸泡在银丝氯化溶液中,氯化20-30s取出即可,此时浸泡在溶液中的银丝被氯化,表面呈现 银白色或灰白色。

银丝必须打磨光亮后才可用于氯化,否则容易造成氯化层表面不平,易引入噪音。

图24 银丝氯化装置

6. 微传感器(电极)的校正

6.1 单离子微传感器(电极)的校正

6.1.1 单离子微传感器(电极)的安装

1) 将氯化好的银丝从已灌充电解液和LIX的微传感器(电极)后端插入,直至微传感器(电极)后端与 传感器(电极)固定架接触。此时银丝应浸入电解液中但与微传感器(电极)尖端保持一定距离 。

图25 安装好的离子选择性微传感器(电极)

2) 佩戴好防静电手腕,将安装好的微传感器(电极)与前置放大器相连接。

图26 微传感器(电极)与前置放大器的连接

6.1.2 离子选择性微传感器(电极)的能斯特斜率

为了测试离子选择性传感器(电极)是否正常工作,首先要了解它在不同的被测离子浓度下的反应。 在待测范围内以10为倍数改变浓度作为常规背景浓度。将离子选择性传感器(电极)和参比电极一起放 入校正液中,使用imFluxes V2.0软件中传感器(电极)校准界面进行校正。

各种离子选择性微传感器(电极)校正理论值能斯特斜率如下:

- 一价正离子 58 mv/decade
- 一价负离子 -58 mv/decade
- 二价正离子 29 mv/decade

≦ 注:由于某些因素干扰,校正后的能斯特斜率往往不能达到理论值,但只要在一定范围内即可。(一价正离子58±5 mv/decade;一价负离子-58±5 mv/decade; 二价正离子29±3 mv/decade)

6.1.3 校正液知识

使用至少两种浓度的溶液来校正。可以调节两个校正液中的待测离子浓度分别高于和低于测试液中该 离子浓度,以确保较好的两点校正,推荐浓度差为10的倍数。

例如:测试液Ca²⁺浓度为0.2mM。

则两个校正液浓度可以是0.1mM和1mM;也可以是0.1mM和0.5mM。

📫 注:软件还支持三点校正,确定电极斜率时更加准确。

□ 注意事项:请见附录四.1.2.1

6.1.4 校正传感器(电极)的步骤

1) 将配制好的校正液倒入两个塑料培养皿中;

2) 将盛有校正液的塑料培养皿放到载物台上,将参比电极冲洗干净,插入浓度高的校正液1 (solution 1) 中,随后传感器(电极)插入同一溶液中。 **注意事项:请见附录四.1.2.2**

3)利用显微镜及三维运动位移平台将传感器(电极)的图像清晰的呈现在显示器上,以确保传感器 (电极)尖端的LIX存在。 **注意事项:请见附录四.1.2.3**

如果LIX泄漏。 **注意事项:请见附录四.1.2.4**

4) 开始校正

a)进入 ≥ 电极校准 后,直接在对话框中填入校正液1的浓度值(或在对话框下用鼠标拖动数值到相应的浓度值),H⁺浓度值单位为(pH),其它离子浓度值单位(mM)。

点击界面图形下方的 ▶ 鳥动 键,按键背景颜色由灰色变成黄色,此时开始采集微传感器(电极) 信号读数,传感器(电极)输出项显示传感器(电极)读数,图形上也会出现相应的数值变化;

观察传感器(电极)输出项,待读数稳定后(若变化范围在+1mV),即可点击 确定,读数不再发生 变化,传感器(电极)输出项显示最终读数,如下图所示:

<u> </u>
溶液液度 1(mM) 0.05 ● 0.65 2 4 6 8 10
溶液浓度 2(mM) 0.05 电极输出 2 ●
溶液液度 3(mM) 0.05 0.65 2 4 6 6 10 0.55 2 4 6 6 10 ■ 电振输出 3 -2.728mV 确定
斜率: 0 Min Slop: 53 mV/decade Max Slop: 63 更多点
1.556 0 0 1 1 1 1 1 6 6
-8.434 28. + 46.7 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.7 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

图27 单离子传感器(电极)校准界面

b)将参比电极取出,用去离子水冲洗干净,用滤纸将表面溶液吸干,微传感器(电极)也从溶液中 取出;

c)将微传感器(电极)和参比电极换到校正液2中,在下方对话框中填入校正液2的浓度值(或在对 话框下用鼠标拖动数值到相应的浓度值),H⁺浓度值单位为(pH),其它离子浓度值单位为(mM)。

观察传感器(电极)输出项,待读数稳定后(若变化范围在±1mV),即可点击 ^{确定},读数不再发 生变化,传感器(电极)输出项显示最终读数。

注:本软件具有读数超出量程自动报警提醒功能,如果微传感器(电极)输出读数超过软件设定的经验值范围,传感器(电极)读数输出项会变成红色并不断闪烁,提醒操作人员注意,如图所示:

 溶液液度 1(mM) 0.05 电极输出 1 1014.657mV 确定
ixik 2 0 0 10 溶液液度 2(mM) 0.1 电振输出 2 6 6 0.5 2 4 6 0 10 10 10 6
常被浓度 3(mM) 0.5 电振输出 3 4(m → 10) 4(m → 10) 5(m → 10) 5(m → 10) 10
斜率: 55.024 Min Slop : 53 mV/decade Max Slop : 63 夏多点

图28 单离子传感器(电极)输出读数超量程自动报警

如果出现超出量程自动报警时 🕒 注意事项:请见附录四.1.2.5

d)校正溶液1和校正溶液2传感器(电极)输出项读数确定后,会自动显示微传感器(电极)计算 后的校正斜率,右侧是校正斜率的范围值,正常校正斜率应在范围内,超过此斜率范围的微传感器(电极)不可以使用。

	容液液度 1(mM)	0.05	电极输出 1	
. 00	5 2 4	6 8 10	-80.012mV	取消
14 • 0.00	穿液液度 2(mM) 5 2 4	0.1 6 8 10	电极输出 2 -61.586mV	取消
	容被浓度 3(mM) 5 2 4	0 6 8 10	电极输出 3 > 0mV	确定
	斜率: mV/d	56.558 ecade	Min Slop : 53 Max Slop : 63	更多点
(mV)	-1			
根輸出	-3			

图29 单离子传感器(电极)校正斜率合格界面

当微传感器(电极)校正斜率不在规定范围内时,校准界面中的"斜率"窗口会变成红色并不断闪烁,提醒操作人员注意,如下图所示:

/	电极种类选择 电极校准 巡测试样品
	K
	溶液液度 1(mM) 0.05 ↓ 0.05 2 4 6 8 10 ↓ 1014.109mV 取消
	溶液液度 2(mM) 0.1 电极输出 2 4 0.05 2 4 6 8 10 10 1013.287mV 取消
	■ 溶液液度 3(mM) 0.5 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
	斜率: 1065.949 mV/decade Min Slop : 53 Max Slop : 63 更多点
	0 C/M
	· · · · · · · · · · · · · · · · · · ·
	❷于22.8 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 32.8 予 时间(s)
	▶ 停止

图30 单离子传感器(电极)校正斜率超出规定范围

微传感器(电极)校正斜率不在规定范围内的原因及解决方法 📑 注意事项:请见附录四.1.2.6

可以通过右侧" www 数据记录"界面查询微传感器(电极)校正相关信息;

电极种类选择 🗾 电极校准 🔛 测试样品	当前用户: Administrator	₩ 数据记录 🧘 运动控制
• 桂极种类选择 ● 电极校准 ● 测试样品 · · · · · · · · · · · · · · · · · · ·	Hatting a (b) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
281 ≠ 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 州 新闻(s) 原止 日 現 7	梁平 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 ● 前間(s) 日 現 表 日 現 表	

图31 单离子传感器(电极)校正信息

f)如需要三点校正,勾选下面校正溶液浓度3前的选项,开启其功能,其它相关操作步骤可参考 a)、b)、c)、d)、e),如图:

🖥 电极种类选择 🔽 电极校准 🌌 测试样品
(
溶液液度 1(mM 0.05 电极输出 1 ● □.05 □.05 □.05 □
溶液液度 2(mM) 0.1 电极输出 2 0.05 2 4 6 8 10 -61.586mV 取滴
注意法定 3(mM) 0.5 40.05 2 4 6 8 10 0.05 2 4 6 8 10 ● -23.126mV 取消
斜率: 56.558 Min Slop : 53 更多点 mV/decade Max Slop : 63 更多点
1 日本語
2月1+4.8 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 14.8 西 町間(s) □ 修止 日 成存

图32 单离子传感器(电极)溶液浓度3校正界面

g) 如需要更多点校正,可以点击"更多点"选项,进行多浓度溶液校正,如图:

一里电	极种类选择	🗾 电极校准	🦉 测试样品	1			当前用	户: Admini
	溶液液度 1(mM) ● 0.05 2 4		3板输出 1 -80,012mV 取	消		溶液浓度 1(%)	0 60 80	电极输出: ▶ OpA
	溶液洗度 2(mM) 0.1 ●低物出 2 ●低物出 2 ●161.586mV 電液洗度 3(mM) 0.5 ●低物出 3 ●3.5 ● 4.558 ● 4.558 ■ 5.558 ■ 5.558		消	後療疣度(mM 1.5 电振输出		A 家消 品 一 一 名 田 田 名 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日		
	0 -1 -1 -1 -2 -2 -2 -1 -1 -1 -2 -2 -2 -2 	.0 8.0 9.0 10.0 时间(s)	11.0 12.0 13.0 14	···· 0 14.8 保存	0.044 0.04400000000	94 42 0 02 = 1 = 1 = 1 = 1 = 1.0 = 1.	0.4 0.6 0.8 2.0 3.0 4.0	執定 5.0 6.0 7. 时间 (s)

图33 单离子传感器(电极)更多点校正窗口

h)如在校正过程中发现电位值读数波动明显(数值在个位数上跳跃式变化),或稳定时间过长(大于10分钟),说明设备可能存在一定问题。 **□ 注意事项:请见附录四.1.2.7**

6.2 单分子微传感器(电极)的校正

6.2.1 单分子微传感器(电极)的安装

1) 佩戴好防静电手腕,将极谱分子微传感器(电极)与极谱前置放大器相连接。

图34 极谱分子微传感器(电极)与前置放大器相连接

2) 打开分子或离子/分子高增量主放大器电源开关,此时电压表屏幕上应显示0.000或-.000。

图35 分子或离子/分子高增量主放大器屏幕显示

6.2.2 校正传感器(电极)的步骤

1) 以氧气测定为例,将准备好的测试液倒入培养皿中并放到载物台上,将参比电极冲洗干净,插入 测试液中,随后氧传感器(电极)插入同一溶液中。

2)利用显微镜及三维运动位移平台将传感器(电极)的图像清晰的呈现在显示器上,以确保传感器(电极)外形及尖端完好无损伤。

3)将极谱控制器上的"+/OFF/-"开关向下扳到"-",再将左侧电位旋钮沿顺时针方向旋转,直到 电压表屏幕显示"-.750",此时显示电压为氧传感器(电极)的极化电压,即-750mV。

i 注: H₂O₂极化电压为+600mV,IAA极化电压为+700mV。

4)选择单分子传感器(电极)类型后,进入 ≥ 电极校准 界面,通过点击图形下方" ≥ 启动"
 键,按键背景颜色由灰色变成黄色,此时开始采集微传感器(电极)信号读数,观察图形上的读数变化,待稳定后再进行下一步操作,此过程根据传感器(电极)状态及测试液成分可能需要比较长的时间。

□ 注意事项:请见附录四.1.3.1

5)将测试液倒入锥形瓶,充入氮气10分钟后,作为校正液1,即氧气浓度0mM(0%);将测试液倒入另一个锥形瓶,充入空气10分钟后,作为校正液2,即氧气浓度(21%)。

注: 过氧化氢的校正是用测试液配置浓度为0.01mM、0.1mM、1mM的过氧化氢溶液作为校 正液,需要现配现用。配制溶液时注意带手套。

6) 将准备好的校正液倒入两个培养皿中。

8) 开始校正

a)选择单分子传感器(电极)类型后,进入 ≥ 电极校准 界面,直接在对话框中填入校正液1的浓度 值(或在对话框下用鼠标拖动数值到相应的浓度值),O₂浓度值单位为(%),其它分子浓度值单位为 (mM)。

观察传感器(电极)输出项,待读数稳定后(若变化范围在±5pA),即可点击"^{确定}",读数不再发生变化,传感器(电极)输出项显示最终读数,如下图所示:

<mark>]</mark> 电	极种类选择 🗹 电极校准 📝 测试样品
	02
	溶液浓度 1(%) 0 ■ 180,156pA 確定
	溶液液度 2(%) 21 ● 20 40 60 90 100 ● 20 40 60 90 100 电极输出 2 -1253.324pA 确定
	溶液浓度 3(%) 0 电极输出 3 ● -27.807pA 确定
	斜率: 0 pA/mM [·] Min Slop : -9000 现象/mM [·] Max Slop : -2000
	-1.205
	0 - 20 毎 - 30 単
	-51.25 桑生 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 舟 財间 (s)
	▶ 存止 () 保存

图36 单分子传感器(电极)校准界面

b)将参比电极取出,用去离子水冲洗干净,用滤纸将表面溶液吸干,微传感器(电极)也从溶液中 取出;

c)将微传感器(电极)和参比电极换到校正液2中,在下方对话框中填入校正液2的浓度值(或在对话框下用鼠标拖动数值到相应的浓度值);

观察传感器(电极)输出项,待读数稳定后(若变化范围在±5pA),即可点击" 确定 ",读数不再发生变化,传感器(电极)输出项显示最终读数。

注:本软件具有读数超出量程自动报警提醒功能,如果微传感器(电极)输出读数超过软件设定的 经验值范围,传感器(电极)读数输出项会变成红色并不断闪烁,提醒操作人员注意,如图所示:

*	电极种类选择 🗹 电极校准 💹 测试样品
	Q
	溶液液度 1(%) ● 20 +60 +60 = 50 tool 10 + 10122.864p/ 确定
	溶液液度 2(%) 21 电极输出 2 4 0 0 0 0 100 100 100 40 40 40 40 40 40 40 40 40 40 40 40 4
	溶液液度 3(%) 0 ● 40 60 80 100 ● 20 40 60 80 100 ● -27.807pA 确定
	斜率: 0 Min Slop : -9000 更多点 pA/mM ¹ Max Slop : -2000
	-1.205 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
	-51.205 -91.205 -92 ± 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 兩 詳問(s)

图37 单分子传感器(电极)输出读数超量程自动报警

如果出现超出量程自动报警时 🗗 注意事项:请见附录四.1.3.3

d)校正溶液1和校正溶液2传感器(电极)输出项读数确定后,会自动显示微传感器(电极)计算 后的校正斜率,右侧是校正斜率的范围值,正常校正斜率应在范围内,超过此斜率范围的微传感器(电极)不可以使用。

□ 注意事项:请见附录四.1.3.4

1111	极种类选择 🖉 电极校准 🜌 测试样品
	0
	溶液液度 1(%) 0 ● 30 40 60 90 100 ● 30 40 60 90 100 ■根稿出 1 ■180.156pA 取消
	溶液液度 2(%) 21 电极输出 2 → → → → → → → → → → → → → → → → → → →
	溶液液度 3(%) 0 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
	斜率: -4088.259 pA/mM Min Slop : -9000 Max Slop : -2000
	-1.205 -100 -200
	2월± 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 ♠ 詳闻(s)
	▶ · ───────────────────────────────────

图38 单分子传感器(电极)校正斜率合格界面

当微传感器(电极)校正斜率不在规定范围内时,校准界面中的"斜率"窗口会变成红色并不断闪烁,提醒操作人员注意,如下图所示:

1 电极种类选择	🗾 电极校准	▶ 测试样品
	02	
溶液液度 1(%)	0 the second sec	极输出 1 180.156pA 取消
溶液液度 2(%) [4	21 60 80 100	极输出 2 1253.324pA 取消
溶液液度 3(%) [● 0 20 40	0 the second sec	极输出 3 -27.807pA 确定
斜率: 2 pA/n	42.293 nM Max	Slop : -9000 Slop : -2000 E \$.
-1.205 -10 -10 -10 -20 -20 -37 		
₩ -40 -51.205 -51.205 -51.205 -51.205	5.5 6.0 6.5 7.0 时间(7.5 8.0 8.5 9.0 9.5 s)
		停止 保存

图39 单分子传感器(电极)校正斜率超出规定范围

微传感器(电极)校正斜率不在规定范围内的原因及解决方法 📑 注意事项:请见附录四.1.3.5

e)微传感器(电极)校正斜率合格后,先点击图形下方"▶ ┍ μ ",然后点击" _{□ 保存}", 此时微电极斜率已经保存;

可以通过右侧" www 数据记录"界面查询微传感器(电极)校正相关信息;

 †	1.极种类选择 🛛 电极校准 🛛 🌌 测试样品	当前用户: Administrator	₩ 数据记录 🛴 运动控制
	(%) 0 0 电极输出 1 (-156.367pA 取消 资源该度 2(%) 21 电极输出 2 歌游 资形的 0 0 电极输出 2 歌游 家游 家游	宿禰流度 1(%) 0 电振输出 1 ① □	15:34:56 通道2 校建英章:02 第译:-135:412 pAlm 截提:-135:357pA 词语使度2:21:000 % 电极输出:-155:357 pA 词语使度2:21:000 % 电极输出:-158:307 +45 pA
	HTHRWAR (3, (3)) OpA 確定 の の 40 60 80 100	■	
	斜率: -7189.412 Min Slop : -9000 pA/mM Max Slop : -2000 更多点	斜事: 0 Min Slop : -9000 更多点 Ammed Am	
	1 3 0.5 3 0 9 -0.5 0.5 9 -0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	205 朝 0 第 005 日 1 205 1 1 205 1 1 205 1 1 205 1 1 1 1 1 1 1 1 1 1 1 1 1	

图40 单分子传感器(电极)校正信息

f)如需要三点校正,勾选下面校正溶液浓度3前的选项,开启其功能,其它相关操作步骤可参考a)、b)、c)、d)、e),如图:

2 4	电极种类选择	🛃 电极校准	测试样品
		K+	
	溶液液度 1(mM)	0.05	级输出 1 80.012mV 取消
	溶液浓度 2(mM)	0.1 Har	版输出 2 61.586mV 取消
	溶液浓度 3(mM) ▲ 0.05 2 4	0.5 to	版输出 3 23.126mV 取消
	斜率:! mV/de	56.558 Min S cade Max S	lop : 53 Ĵlop : 63
	0 -1- E -2		
	# # # -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	n 80 90 100	
	ð	时间 (s)	▶ 停止

图41 溶液浓度3校正界面

g) 如需要更多点校正,可以点击"更多点"选项,进行多浓度溶液校正,如图:

。电	极种类选择 🖉 电极校准 🜌 测试样品	当前用户: Administ
	溶液浓度 2(mM) 0.1 电极输出 2 ● -61.586mV 取消 0.05 2 4 6 0 10 ■	2 A 溶液液度(mM) 1.5 电振输出
	溶液度 3(mM) 0.5 电极输出 3 -23.126mV 取消 ○05 2 4 6 0 10 ○3.126mV 取消 ○3.126mV 和示 ○3	0.05 2 4 6 8 10 0.05 2 4 6 8 10 0.05 2 5 6 ₩ ₩ ₩ 90 0.05 2 10 10 10 10 10 10 10 10 10 10 10 10 10
	0 1 3 3 3 3 3 3 3 3 3 3 3 3 3	004-1 の04-1 通知 一 一 一 一 一 一 一 一 一
	▶ 停止	

图42 更多点校正窗口

7. 样品固定及观察

运行视频采集软件PHMIAS2008(参照第三部分系统软件运行第3.3小节中的操作步骤); 出现图像采集界面,如图:

图43 PHMIAS2008 En ver3.0软件图像采集界面

以下简单介绍各界面按钮功能:

Preview: 预览观察图像	Stop: 停止采集图像	Capture: 拍摄图片
Auto Take: 自动拍摄图片	Record: 录像	V_Format: 视频格式
V_Source: 视频源	RGB: RGB色彩调试	Auto Foucs: 自动对焦
Grid Setting: 网格设定	Return: 返回菜单	

注: 视频采集软件的其它功能介绍及具体使用方法,请参见附赠光盘中的"视频采集软件说明书"。

将样品固定于培养皿中,使之不受干扰与移动。通常组织样品可以用机械方法固定;单细胞如贴壁生 长则无需再次固定,如悬浮生长可使用多聚赖氨酸固定或显微操作方法固定。

加入适量测试液,使液面没过样品5mm。将培养皿置于显微镜视野下,打开显微成像装置光源,先 在低倍镜下找到样品,然后调整到合适的放大倍数,使样品可以在显示器适中显示。如微传感器(电 极)位于右侧,则样品稍偏左可以更加方便实验,反之亦然。 **注意事项:请见附录四.1.4.1**

显微镜的物镜倍数的选择根据实际样品而定。 [] 注意事项:请见附录四.1.4.2

图44 测试时的样品展示图

8. 微传感器(电极)定位

8.1 手动调节

1)开始调节电极运动和定位前,首先要确认位移传递架处于螺杆中间位置,以便留出充分的移动空间;

2) 手动调节时,务必要确认控制面板上的Motion(电机运动)指示灯已经熄灭,否则易造成步进电机损坏;

3) 首先通过横向滑块和交叉杆架调节微传感器(电极)的位置和角度,使微传感器(电极)调整到 显微镜物镜的正上方,然后再通过降低前置放大器上的固定滑块使传感器(电极)上下移动,在肉眼观 察下使微传感器(电极)浸入溶液并接近样品上方;

4) 通过滑块的调整并配合手动调整步进电机的旋钮,先在低倍镜下寻找微传感器(电极);

- 5) 当微传感器(电极)接近视野中央后,切换显微镜物镜镜头,调整到观察样品所需放大倍数;
- 6) 通过反复调节显微镜焦距和手动调整步进电机的旋钮,其微传感器(电极)逐步靠近样品位置;

7)最终将样品的图像聚焦清晰呈现在显示器上,手动调整步进电机的旋钮,使微传感器(电极)的 影像也同时出现在显示器上(微传感器(电极)的图像暂不需要调节清晰,只要有大体轮廓就可以);

8)当显示器上可以同时看到样品清晰的图像和微传感器(电极)图像轮廓后,即可关闭屏蔽罩,利 用imFluxes V2.0软件中的运动控制界面来控制微传感器(电极)在三维方向进行运动,使其接近待测点。

8.2 计算机控制电动调节

打开运动控制器;

按下MOTION按钮后,上方指示灯亮起,此时方可从键盘控制微传感器(电极)进行三维运动;手动 调整驱动器的旋钮时,则需再次按下此按钮,确定指示灯熄灭后才可进行手动调节,否则易造成驱动器 损坏。

图45 运动控制器面板示意图

启动imFluxes V2.0软件后,点击主界面右侧 " 🛴 运动控制"按钮进入界面。

1) 左右上下四个方向键来分别控制微传感器(电极)沿X、Y方向运动。

2) 通过Home/End键控制微传感器(电极)沿Z方向上下运动。

3) 每按一下方向键, 微传感器(电极)移动的距离由Sensivity设定, 这个数值既可以在"μm/ Keykit"格里直接输入,也可以用小键盘的+/-键来加倍或者减半。

根据微传感器(电极)与样品之间的距离,调节Sensivity处微传感器(电极)移动距离,使微传感器 (电极)逐渐靠近样品,直至传感器(电极)尖端和样品之间距离保持在2-5μm之间,并且两者均在同一 视野中清晰成像。

4)可以通过Rotate来调整传感器(电极)移动方向的角度,范围在-180°—— +180°,同时在测试 样品界面下的采样规则中自动进行数据测定时,也可以使用此功能来调整测定方向以便适用不同样品形 状。

图46 运动控制界面

9. 开始测试

当传感器(电极)校正完毕并保存校正信息后,主界面中的" 🌌 测试样品"由灰色变成

" 赵测试样品",样品待测位点与微传感器(电极)位置确定后,即可开始测量。

初始测试时的注意事项。 🗗 注意事项:请见附录五.1.5.1-1.5.2

1) 首先要选择测试中所使用的采样规则,常用的采样规则已经在软件中预先安装并设置完毕,用户 只需选择相应的采样规则即可,如下图:

Time	Name		
			- 8
147			
	报表	标记	
采样规	服表	标记	
□ 采样规	则	标记	~
采样规 【 2 Prol	报表 	标记	~
采样规 I 2 Prol	报表 则 xes X-5 xe Y-20	标记	~
采样规 2 Prol 2 Prol	报表 则 pes X-5 pe Y-20	标记	~
采样规 2 Prol 2 Prol 持续时	报表 则 xes X-5 xe Y-20 间	标记	~
采样规 2 Prol 2 Prol 持续时	则 ^{bes X-5} ∞ Y-20 间	标记	
采样规 2 Prot	擬表 则 res X-5 re Y-20	标记	×
采样规 2 Proi 2 Proi	版 则 mes X-5 me Y-20	标记	

图47 采样规则选择界面

备注:根据客户所选购系统型号的不同,采样规则也有所不同,单离子、单分子微传感器(电极)是 一类采样规则,测定单传感器(电极)时可以在其中选取测试所需采样规则;

2) 点击测试样品界面中的"**」**^版",会弹出对话框,可以对样品信息进行文字添加,确定后点击"_{添加}"按钮,如下图:

名称	_	
拟南芥		
说明		
<u>col 7天</u>		
	取消	添加

3)选择的采样规则及添加标记后的相关信息会保存在右侧的"ww数据记录"中,以便后续查看,如下图:

W	▲数据记录	<mark>、入</mark> 运动控制
	15:24:03 当前用户: Admir	nistrator
	15:34:54 通道1 校准系数 斜率:57.447 mV/decade 截距:414.985mV	: H+
	溶液浓度1:5.000 pH 溶液浓度2:6.000 pH 溶液浓度3:7.000 pH	电极输出1:300.586 mV 电极输出2:241.656 mV 电极输出3:185.693 mV
	15:34:56 通道2 校准系数 斜率:-7189.412 pA/mM 載距:-158.367pA	: 02
	溶液浓度1:0.000 % 溶液浓度2:21.000 %	电极输出1:-158.367 pA 电极输出2:-188880.445 pA
	16:17:11 采样规则:2 Pro 16:19:25	ibes X-5

图49 数据记录中采样规则及标记信息

4)调整好样品与微传感器(电极)之间的位置,在另一个显示器中的视频采集软件界面下点击 "Capture"按键,即可拍摄并自动保存图片到预设定的文件夹。

图50 视频采集软件界面

5)点击界面中的" L & 动",开始测定样品浓度及流速等信息。浓度及流速的实时数据会以图形的 形式在" M 测试样品"界面左侧出现,测定的同时数据会记录保存在界面右侧" M 数据记录"中,如下 图:

□ 注意事项:请见附录五.1.5.3-1.5.6

图51 测试样品主界面

6)停止测试时,需点击"□停止"按键,界面中会出现"等待停止…"的提示,待提示消失后传感器(电极)停止测试;

10. 数据及图形输出

1)全部测试完毕后,必须点击" 🤮 数据输出 "才能正常输出全部测试数据,数据以Excel表格形式 输出如下图,否则直接打开文件时可能会出现错误,请用户特别注意。

A1 🔸 🏂 时间							
	A	В	С	D	E	F	G
1	时间	当前用户:	Administrator	用户信息			
2	16:40:02	校准	通道 1: H+			电极	
3	时间	溶液浓度1	6.000 pH	电极输出1	100.254 mV		
4		溶液浓度2	5.000 pH	电极输出2	158.000 mV	校正	
5		溶液浓度3	4.000 pH	电极输出3	213.500 mV	12.6	
6		斜率	56.623 mV/deca	ade		18 忠	
7		截距	270.497mV				
8	16:42:26	采样规则	2 Probes X-5				
9	16:42:29	开始测试					
10	16:42:30	通道 1: H+	\/0(m\/)	∨1(mV)	d∨1(uV)	溶液浓度1(pH)	流速1(pmol·cm-
11	16:42:30	高子	-2.879	-2.904	25.57	0	0.639
12	16:42:44		-2.906	-2.905	-1.608	0	-0.04
13	16:42:59	分子	-2.911	-2.907	-4.477	0	-0.112
14	16:43:14	and a be	-2.916	-2.912	-4.007	0	-0.1
15	16:43:28	测足	-2.909	-2.903	-6.097	0	-0.152
16	16:43:43	住自	-2.909	-2.905	-3.489	0	-0.087
17	16:43:58	10.02	-2.912	-2.91	-2.03	0	-0.051
18	16:44:12		-2.91	-2.904	-5.936	0	-0.148
19	16:44:28	停止测试		1			

图52 数据输出Excel表格

 可以在测试数据图型中添加"注释"的功能,如用户有需要可以使用,步骤如下: 将鼠标放在数据图形上,单击右键出现选择项,点击"创建注释",如图所示:

图53 创建注释对话框

在对话框"注释名称"中添加相关信息,然后点击"确定"按钮,如图所示:

注释名称 add 100mM NaC						
锁定风格 自由	~					
し 锁定曲线 Plot 0						
■ 隐藏箭头	<u> </u>					
🗌 锁定名称						
确定 取消	帮助					

图54 创建注释对话框

创建注释后,相关信息会显示在数据图型中,可以对注释的位置进行调整,调整后如下图所示:

様度 -10.931 uV 旅度 5.043 pH	÷π
浓度 5.043 pH	
5.05 5.05 5.05 5.05 5.05 5.05 5.015 5.015 5.015 5.015	
5년 [월두] 14:13:00 14:18:00 14:23:00 14:28:00 14:38:00 14:38:00 14:38:00 14:45:18 (한)	
流速 -233.645 pmol • cm ⁻² • s ⁻¹	
요 + 14:13:35 14:18:35 14:23:35 14:28:35 14:33:35 14:38:35 14:45:11 관 B打려	

图55 数据图形中显示注释标记

3)软件中有将测试数据图表以图片(.bmp)形式保存的功能,如用户有需要可以使用,步骤如下: 将鼠标放在数据图型上,单击右键出现选择项,点击"导出简化图像",如图所示:

图56 数据图表保存界面

出现"导出简化图像"对话框,选择相应的图片格式及保存位置后,点击"保存按钮"

图57 导出简化图像对话框

打开保存后的导出图像,如下图所示:

浓度 5.045 5.04 5.035 add 100mMNaCl 5.03 袛 ^{5.025} 送 5.02 5.02 5.015 5.01 5.005 ÷ 5-. . . . 1 1 1 1 11 14:13:00 14:18:00 14:23:00 14:28:00 14:33:00 14:38:00 14:45:18 时间 流速 1500 add 100mM NaCl 1000 500 澎涌 0 -500 -1000 -1500 -14:23:35 14:28:35 14:33:35 14:38:35 14:13:35 14:18:35 14:45:11 时间

图58 打开导出后的图形显示

11. 结束测试

- 将微传感器(电极)从微传感器(电极)固定架上取下,放入废弃罐中,以免腐蚀电极固定架上 的银丝。
- 2) 取下参比电极用去离子水冲洗干净后,在3M KCl溶液浸泡保存。
- 3) 实验结束后,将各方向上的位移传递架回归原位,使位移传递架处于螺杆中间位置。
- 4) 关闭数据采集系统、信号处理器、运动控制器、显微镜、显示器等设备电源。
- 5) 关闭系统插线板开关,最后关闭稳压电源开关,盖好防尘罩。

1. 注意事项

1.1 离子选择性微传感器(电极)的制作

1.1.1 为确保测试顺利进行,请使用新的LIX载体蘸取。

1.1.2 电解液需要低温保存,并定期更换(建议一个月更换一次)。

灌入电解液后发现传感器(电极)内部出现不连续的液柱(被空气阻断)、有杂物或传感器(电极) 尖端损坏等异常情况,更换新传感器(电极)。

离子选择性微电极灌充液成分、离子交换剂型号、灌充长度一览表

	灌充液/介质成分	离子交换剂	LIX灌充长度
H^+	15 mM NaCl + 40mM KH ₂ PO ₄ (pH 7.0)	XY-SJ-H	40-50µm
Ca ²⁺	100 mM CaCl ₂	XY-SJ-Ca	40-50µm
K ⁺	100 mM KCl	XY-SJ-K	180µm
Na ⁺	250 mM NaCl	XY-SJ-Na	40-50µm
Cl	100 mM KCl	XY-SJ-Cl	80µm
NH_4^+	100 mM NH ₄ Cl	XY-SJ-NH ₄	40-50µm
NO ₃	10 mM KNO ₃	XY-SJ-NO ₃	80µm
Cd ²⁺	10mM Cd(NO ₃) ₂ +0.1mM KCl	XY-SJ-Cd	40-50µm
Mg ²⁺ 500mM MgCl ₂		XY-SJ-Mg	40-50µm

图59 离子选择性微传感器(电极)灌充液成分、离子交换剂型号、灌充长度一览表

传感器(电极)型号: XY-DJ-01(组织样品专用4-5 μm)

XY-DJ-02 (细胞样品专用1-2 μm)

XY-DJ01(组织样品专用8-10 μm)

1.2 单离子微传感器(电极)的校正

1.2.1 为保证测试过程顺利进行,强烈建议选择美国扬格(旭月北京)非损伤技术服务中心提供的校 正液及测试液商品。

1.2.2 传感器(电极)不要碰底部,但最好深入液面较深处;参比电极和离子传感器(电极)的距离要保持相对固定,不要忽远忽近;在更换校正液之前冲洗参比电极。

1.2.3 如何在显微镜下快速准确的找到传感器(电极)尖端?

1.2.3.1 调节显微镜的物镜旋钮,使物镜升到最高位置。

1.2.3.2 将滑块位置降低,使传感器(电极)尖端接近物镜。

1.2.3.3 调节电动三维位移平台的X轴旋钮,使从正面观察传感器(电极)时,其尖端位于显微镜视野偏

左的位置。

1.2.3.4 调节电动三维位移平台的Y轴旋钮,使传感器(电极)的前端扫过显微镜视野,同时观察监视器并调节X轴旋钮,使传感器(电极)向右运动,使传感器(电极)尖端的虚影位于显微镜视野的中央。

1.2.3.5 调节显微镜的物镜旋钮,使传感器(电极)尖端清晰的呈现在视野中央。

1.2.4 如果微传感器(电极)中的LIX发生泄漏,可按照以下步骤执行:

1.2.4.1 重新灌充LIX,过程中适当增加LIX反复进出尖端次数(7-8次),LIX灌充长度请参见图59。

1.2.4.2 上述步骤无效,可取一支新的LIX载体吸取一点新的LIX,再重新灌充。

1.2.4.3 上述步骤无效,可以更换一支新玻璃微传感器(电极)重新制作,如制作3支以上还是存在 LIX泄漏的情况,建议更换另一盒传感器(电极)再重新制作;如问题仍不能解决请及时联系旭月公司客 服中心人员。

1.2.5 如果电压读数出现错误提示或显示超量程

按照以下步骤执行:

1.2.5.1 检查参比电极内部保存液是否充足?如果不足,补充3M KCl溶液。

1.2.5.2 参比电极是否浸没在溶液中?如果不在溶液中,将参比电极放入校正液中。

1.2.5.3 传感器(电极)是否浸没在溶液中?如果不在溶液中,将传感器(电极)放入校正液中。

1.2.5.4 上述步骤无效,取下传感器(电极)在传感器(电极)制备显微镜下观察尖端是否有气泡,如 果有重新制作电极。

1.2.6 如果校正值S(斜率)偏低,按以下步骤执行:

将高浓度校正液稀释10倍,得到低浓度校正液,重新进行校正。

上述步骤重复两遍后仍无效,使用待测离子的纯溶液作为两个不同浓度的校正液进行校正,如果此校 正液校正出的斜率正常,按照测试方案表中配方,重新配制高、低浓度的校正液和测试液,然后进行校 正。

上述步骤无效,更换新的LIX,重新灌充制作传感器(电极)。

上述步骤无效,更换参比电极内部保存溶液(3M KCl)。

1.2.7 如果读数波动明显(数值在个位数上跳跃式变化),或稳定时间过长(大于10分钟),按照以下步骤执行:

1.2.7.1 保证传感器(电极)等全部连接正确的情况下,观察传感器(电极)尖端是否正常(LIX过短和有气泡都不行),此步骤在显示器上观察即可,有问题重新灌LIX。

1.2.7.2 如果传感器(电极)尖端看上去没问题,首先更换溶液再试一次,还不行的话可以更换其它测试液或蒸馏水试试(即使是空白溶液也可能出现问题)。

1.2.7.3 排除溶液问题后,可以按顺序更换LIX(蘸新的),灌充液(打出注射器中原来的溶液,吸入新的),微传感器(电极)固定架(如果银丝氯化效果不好)。

1.2.7.4 参比电极中的溶液可以重新灌。

1.2.7.5 以上方法都不能解决问题时,有可能是系统接地不良造成的,需要按以下步骤解决:

关闭除计算机、信号处理器外的所有外设电源开关,需要对可能影响的因素进行逐一排查;依次打开每个设备电源,观察电位值波动是否有所变化,如果打开某一个设备电源开关时,发现电位值波动大, 说明此设备电源接地不良,需要将设备外壳引入一根地线到地线板上,以此类推,直到电位值变化在正 常范围内(电位值在小数点后一位变化)。

1.3 单分子微传感器(电极)的校正

1.3.1 氧传感器(电极)10分钟内数值保持在小数点后第二位不变即为极化完毕,电流值范围应 在-700pA以上,低于-700pA的传感器(电极)最好不进行使用。过氧化氢传感器(电极)10分钟内数值 保持在小数点后第三位不变即为极化完毕,电流值范围一般在±3pA之间。

1.3.2 在充氮气的溶液(Solution 1)中不用等到电流稳定再取值,一般放入溶液中稳定1分钟后取值,以免时间过长,空气中的氧进入溶液,影响电流值。

1.3.3 如果电流读数显示超量程,可以按照以下步骤执行:

1.3.3.1 检查参比电极内部保存液是否充足?如果不足,补充3M KCl溶液。

1.3.3.2 参比电极是否浸没在溶液中?如果不在溶液中,将参比电极放入校正液中。

1.3.3.3 传感器(电极)是否浸没在溶液中?如果不在溶液中,将电极放入校正液中。

1.3.3.4 上述步骤无效,在显微镜下观察传感器(电极)尖端是否损坏,如果损坏请更换电极。

1.3.4 氧传感器(电极)的斜率值会根据传感器(电极)状态和测试液成分不同而有所不同,校正曲线斜率值只要在-2000至-9000pA/mM,即可继续使用;过氧化氢的校正斜率值一般在50-90pA/mM左右。

1.3.5 如果微传感器(电极)校正斜率不在范围内,可以按照以下步骤执行:

1.3.5.1 将两个校正液重新充氮气和空气后再校正一次。

1.3.5.2 将高浓度校正液稀释10倍,得到低浓度校正液。重新进行校正。

1.3.5.3 参比电极中溶液成分或浓度不对。

1.4 样品固定及观察

1.4.1 如果采用滤纸条和树脂块固定待测样品,则可以先用显微镜寻找到滤纸条边缘,然后调节载物台旋钮使载物台横向移动,沿着滤纸条边缘即可找到测试样品,然后再通过调节载物台旋钮和物镜旋钮,使样品待测部位出现在视野当中。

1.4.2 显微镜物镜放大倍数选择原则:一般根据样品大小不同,使用不同放大倍数的物镜。组织样品 较大,则可以根据实际情况,选择放大倍数较低的物镜进行测定;细胞样品相对较小,为了测量准确, 则必须选择放大倍数较高的物镜进行测定。

1.5 开始测量

1.5.1 请注意当一天中第一次测定时,建议将微传感器(电极)放入空白测试中进行5分钟的流速测定,观察测定数值,以确保测定数值应在基线附近。

1.5.2 可能在初始测定时会遇到增强的干扰信号和瞬时人工信号。如果传感器(电极)是好的,运行 几分钟,它就会稳定下来。如果半个小时后还未稳定,请更换一支新传感器(电极)。

1.5.3 在实验记录表上相应位置记录样品附近的电位值(mV)和流速值(pmol cm⁻² s⁻¹)。

注意:如果测试中出现电位在测试液中严重漂移的情况(一价离子电位变化在±10mv以上; 二价离子 电位变化在±5mv以上),需要重新进行传感器(电极)校正,并在测试记录表上进行相应的记录。

1.5.4 动态测试时容易出现的问题及解决方法:

1.5.4.1 测试开始时接近样品出现较大波动,此时可以依次更换另一个测试点、更换测试液; 波动仍 然存在,更换空白测试液测定; 若没有波动,说明可能是样品问题,更换新样品。

1.5.4.2 如果一开始测定时没问题,测试过程中出现波动,大多数是样品或溶液本身造成的,可按上述步骤检测和排除问题。

1.5.5 氧传感器(电极)测试过程中遇到电流值下降很快的情况,需要立即将传感器(电极)远离样品或是放到空白测试液中,看是否能够恢复到原来的电流值,如果无法恢复则需要更换传感器(电极),如果更换传感器(电极)后依然会发生这种情况,需要停止实验进行调整。

1.5.6 氧传感器(电极)测试过程中遇到电流值下降很快的情况,需要立即将传感器(电极)远离样 品或是放到空白测试液中,检测阈值及电流值,看是否能恢复到原来的电流值并且阈值在±3pA内,如果 电流值变化超过500pA,阈值正常,需重新校正传感器(电极);如果电流值不在-700pA~-3000pA范围 内或者阈值超出范围,则需要更换传感器(电极);如果更换传感器(电极)后依然出现这种情况,需 要停止实验进行调整。

2. 常见问题解答

2.1 传感器(电极)开口重要吗? 旭月公司有哪些型号传感器(电极)?

传感器(电极)开口(尖端直径)很重要,传感器(电极)的尖端直径决定了实验的空间分辨率及传 感器(电极)的输入电阻,同时传感器(电极)尖端的形状很大程度上决定着吸附LIX的能力。目前我们 公司常用的是尖端直径1-2μm、4-5μm、8-10μm的传感器(电极)。我公司可根据需要提供多种型号的传 感器(电极)。

2.2 制备传感器(电极)时LIX应灌充多长?

LIX的长度随传感器(电极)种类不同而不同,一般除K⁺、Cl⁻传感器(电极)外,LIX长度应在40-50μm,K⁺传感器(电极)180μm,Cl⁻、NO₃⁻传感器(电极)80μm;

灌充长度影响尖端的电阻,灌充过长的话电阻增大,传感器(电极)稳定较慢。而灌充过短的话容易造成LIX泄漏。

2.3 LIX无法吸入是什么原因? 怎样解决?

LIX在空气中暴露时间过长导致失效,建议更换LIX;

传感器(电极)尖端灌充液挥发结晶堵塞传感器(电极),建议更换传感器(电极);

传感器(电极)内有杂质或灰尘,建议更换传感器(电极)。

2.4 LIX泄漏是什么原因? 怎样解决?

LIX泄漏的原因:

2.4.1 LIX灌充方法不正确;

2.4.2 传感器(电极)硅烷化效果不好;

2.4.3 LIX放置时间过长,导致变质;

2.4.4 电解液浑浊变质;

2.4.5 传感器(电极)开口不达标。

LIX泄漏解决方法:

2.4.6 灌充LIX时,通过压力调节装置使LIX在传感器(电极)尖端反复进出几次;

2.4.7 LIX泄漏后重新灌充LIX,连续灌充2-3次;

2.4.8 将LIX灌充长度在原有基础上增加10-20μm。

2.5 灌充液无法从传感器(电极)尖端推出是什么原因? 怎样解决?

2.5.1 传感器(电极)尖端被堵,可用传感器(电极)先吸取一些LIX后再施加压力即可将灌充液推出。

2.6 测试液和校正液设计时需要遵循的原则有哪些?

2.6.1 测试液可尽量和样品的培养液一致,保证样品的活性。

2.6.2 测试液中应该含有所测定的离子(特殊的研究,如先用没有所测定离子的溶液,然后再加入此种离子的实验情况除外)。

2.6.3 测试液中待测离子的浓度不宜过高,尽量维持在一个较低的水平。

2.6.4 测试液尽量维持一定的渗透压和pH值,以保证样品的活性。

2.6.5 不同的校正液之间的浓度一般相差10倍(特殊的分子除外)。

2.6.6 测试液和校正液最好用相应成分的母液(例如: 100倍的母液)稀释进行配制,避免直接称量误差较大,导致浓度不准确,影响校正和测试。

2.6.7 测试液和校正液pH的调节需注意,不能用含有待测离子的酸或碱调节,如测定Na⁺时调节pH值 不能用NaOH,否则就使溶液中的Na⁺含量增加,可用较少量的KOH调节,最好用氯化胆碱或Tris。

2.7 银丝氯化应注意哪些问题?

2.7.1 用作氯化银丝的电解液的浓度不能太高,用0.1M HCl/KCl即可;

2.7.2 氯化的时间适中, 20s即可, 时间太短氯化效果不好, 太长可能会将银丝弄断。

2.7.3 电池电力不足会导致银丝氯化效果不好。

2.8 测试时参比电极应放在什么位置?

参比电极位置不重要,尽量远离样品;最好深入液面5mm;测试时尽量将参比电极相对与样品的位

置固定。

2.9 键盘控制传感器(电极)没有反应时怎么办?

2.10.1 检查运动控制器电源开关是否打开;

2.10.2 检查运动控制面板上MOTION开关是否打开,上方指示灯是否工作。

2.10 测H⁺时数据非常不稳定是什么原因?

在相对开放的测试环境中,有很多因素如空气中的CO₂、SO₂,溶液中的HCO₃离子等都会导致溶液中的pH变化,对测试有干扰。因此,测试H⁺时,测试液中需要有缓冲能力较强的缓冲体系。若测试中无缓冲体系或缓冲体系缓冲能力不强,很容易导致H⁺数据不稳定。

2.11 非损伤微测技术测试实验时如何加入刺激药物?

非损伤微测技术实验时,如果要加入药物刺激样品,最好把药物溶于测试液,然后添加溶液到测试 容器中,尽量不要用其他液体溶解药物,否则测试容器中的测试液成分会改变,可能给样品造成额外刺 激,导致实验数据不稳定。

加入刺激药物的浓度最好为中等浓度,向测试容器中加入的溶液体积适当多一些。如果刺激药物浓度 太高,加入的溶液量太少,会对样品产生一个高浓度的刺激,而不是药物终浓度的刺激,可能对样品影 响过大,导致实验数据不稳定。

2.12 如何确定样品的测试位置?

可以通过扫点实验的方法确定样品的测试位置。扫点实验即对样品的不同部位或不同区域(如神经元 细胞的胞体和轴突; 植物根部的分生区和成熟区等)进行检测, 然后根据检测信号的结果选择出测试位 置。选择的原则一般如下:

2.12.1 选择样品信号的最强的位置。

2.12.2 按照实验预期选择样品内流或外排最强的位置。

2.12.3 对对照组和处理组分别进行扫点实验,选择处理前后差异最大的位置。

更多内容请登录旭月研究院网址xbi.org

3. 常见故障解答

3.1 机械故障

如果人们开关实验室门或某个设备开始工作时的机械振动,使你得到一个巨大的瞬时波动,那么,你可能需要在机械上隔离你的装备。

3.1.1 抑制或关闭造成振动的设备;

3.1.2 确保防震台浮动良好;

3.1.3 确保连接防震台的电缆不是太紧。

3.2 电学故障(电源线)

如果你遇到的瞬时振荡或噪音不是机械故障,那么电线可能有问题:

3.2.1 你有电源滤波器吗? (最好是UPS不间断电源)

3.2.2 有接地线吗? (单点接地)

3.2.3 所有设备都接地良好吗?

3.2.4 你的参比电极准备好了吗? 在缓冲液中了吗?

3.2.5 传感器(电极)没问题吗?(大多数问题出在离子选择性传感器(电极)或参比电极上)

3.3 电学故障(静噪干扰)

静电噪声干扰是最难检修的问题。最难找出问题所在,也最难移除。良好接地的屏蔽罩是抵抗此类问题的第一道防线(首先检查传感器(电极),高阻抗的传感器(电极)会强烈拾获噪音。确定你的参比电极正常)。以下是一些有帮助的提示:

3.3.1 当你将接地线连接到前置放大器时干扰消失了吗?

3.3.2 传感器(电极)在你身体临近处敏感吗?

3.3.3 样品区屏蔽一个接地的铁片或铝箔是否有改善?

3.3.4 如果对以上问题至少一个答案是肯定的,那么尝试将所有设备紧密接近传感器(电极)接地 (单点)。关掉所有辅助设备,一次关掉一件,定位噪音源。

3.3.5 避免使用任何交流电源设备、任何两相插头(没有接地线)或任何使用固定于底盘的三相取代 塞绳接地的设备。

3.4 热相关

3.4.1 如果你需要在特殊温度下工作,那么以下几点需要注意:

3.4.1.1 将你的控温设备接地;

3.4.1.2 谨防冷凝(浓缩)。

3.4.2 如果加热,在缓冲液上面覆盖一薄层矿物油,视觉上是清澈透光,具有电学和生物学惰性,起 绝热作用,还可以防止缓冲液挥发导致的电阻变化,也可延迟气体释放。如果你需要不时改变和灌注缓 冲液,例如,加药或激素,可用吸液管将油从表面移出或用吸出器将油层撇去。**热梯度会破坏或改变离 子梯度!**

3.4.3 如果使用垂直显微镜观测,物镜会雾化,尝试使用鼓风或防雾剂。

3.4.4 对于微传感器(电极),直流电偏移量随温度漂移是正常的。尽量将温度变化稳定在1℃内。必 须在显微镜光源上使用红外吸收滤光器!

3.5 系统部分配件更换流程

3.5.1 倒置显微镜灯泡的更换流程

3.5.1.1 关闭显微镜电源,将显微镜光源背面的电源线拔掉(如果显微镜使用过程中灯泡熄灭,需要等光源温度降低后再进行灯泡更换,以免烫伤)。如图60:

图60 拔掉电源线

3.5.1.2 抓住黑色光源顶盖,向上拿起,如图61:

图61 拿起光源顶盖

3.5.1.3 将损坏灯泡从插座中直接拔出,如图62:

图62 取下显微镜灯泡

3.5.1.4 将新灯泡插入插座(不分正负极),按相反步骤将配件安装回原位。

3.5.2 传感器(电极)制备显微镜灯泡更换

3.5.2.1 逆时针旋转显微镜底座上的固定螺丝,将螺丝拧松,如图63:

图63 逆时针旋转底座固定螺丝

3.5.2.2 打开显微镜底盖,如图64:

图64 打开显微镜底盖

3.5.2.3 将损坏灯泡从插座中直接拔出(如果显微镜使用过程中灯泡熄灭,需要等光源温度降低后再进行灯泡更换,以免烫伤。)。如图65:

图65 取下显微镜灯泡

3.5.2.4 将新灯泡插入插座(不分正负极),按相反步骤将配件安装回原位。

3.5.3 参比电极内部溶液灌充及套管更换。

3.5.3.1 用手捏住参比电极靠近套管的白色固定器(较细的部分), 逆时针旋转拧松, 将银丝从套管中取出。如图66, 图67:

注: 如需更换套管,此时将套管从白色固定器中穿出,再进行更换即可,如图67:

图66 逆时针旋转固定器

图67 参比电极的银丝与套管

3.5.3.2 参考制备选择性玻璃微传感器(电极)的方法,将3MKCl溶液灌充到参比电极套管中,如图 68:

注: 1. 必须保证套管中溶液连续, 且紧挨尖端。如溶液中间有气泡, 可将套管尖端冲下, 轻弹套管使 气泡排出。

2. 灌充溶液不宜过长,一般保持在套管的一半长度即可。

3. 保证银丝前端的镀层全部浸没在3M KCl溶液中。

图68 灌充3M KCl

3.5.3.3 将银丝插回套管,将套管拧紧。

3.5.4 更换前置放大器

3.5.4.1 关闭信号处理器电源,将需要更换的前置放大器接口从信号处理器上拔下来,如图69:

图69 拔下前置放大器接口

3.5.4.2 带上防静电手腕,用手碰一下防震台的金属部分,导走静电,如图70:

图70 佩戴防静电手腕

3.5.4.3 将参比电极从前置放大器上拔下来,如图71:

图71 拔下参比电极接口

3.5.4.4 在系统附赠的内六角工具中,找到公制3mm改锥,将改锥插进固定前置放大器的黑色万向杆架螺丝孔中,逆时针旋转将万向杆架拧松,如图72:

图72 拧松万向杆架

3.5.4.5 将前置放大器从万向杆架中取下,如图73:

图73 取下前置放大器

3.5.4.6 按照以上的相反步骤,安装新的前置放大器。在安装放大器接口时,注意接口上的小豁口向上,对准信号处理器接口上的小突起,稍稍用力插入,两个接口会自动接合,如图74,图75:

图74 前置放大器接口

图75 信号处理器的AMP 1接口

美国扬格公司(中国)技术服务中心

旭月(兆京)科技有限公司 Xuyue(Beijing)Sci.&Tech.Co.,Ltd. 地址:北京市海淀区苏州街49-3号 盈智大厦601 邮编:100080 电话:010-82622628,82622629,400-06-xuyue(98983) 邮件:wt@xuyue.net 网址:xuyue.net

网址: youngerusa.com 地址: 441 West Street Amherst Office Park Amherst MA, USA 邮编: 01002

